
Safely and Automatically Updating In-Network ACL
Configurations with Intent Language

Bingchuan Tian§⋆†, Xinyi Zhang⋄⋆†, Ennan Zhai⋆, Hongqiang Harry Liu⋆, Qiaobo Ye⋆, Chunsheng Wang⋆, Xin Wu⋆,
Zhiming Ji⋆, Yihong Sang⋆, Ming Zhang⋆, Da Yu•⋆, Chen Tian§, Haitao Zheng△, Ben Y. Zhao△

Nanjing University§, University of California Santa Barbara⋄, Brown University•, University of Chicago△

Alibaba Group⋆

ABSTRACT

In-network Access Control List (ACL) is an important technique in
ensuring network-wide connectivity and security. As cloud-scale
WANs today constantly evolve in size and complexity, in-network
ACL rules are becoming increasingly more complex. This presents
a great challenge to the updating process of ACL configurations:
network operators are frequently required to update “tangled” ACL
rules across thousands of devices to meet diverse business require-
ments, and even a single ACLmisconfigurationmay lead to network
disruptions. Such increasing challenges call for an automated sys-
tem to improve the efficiency and correctness of ACL updates. This
paper presents Jinjing, a system that aids Alibaba’s network opera-
tors in automatically and correctly updating ACL configurations in
Alibaba’s global WAN. Jinjing allows the operators to express in a
declarative language, named LAI, their update intent (e.g., ACL mi-
gration and traffic control). Then, Jinjing automatically synthesizes
ACL update plans that satisfy their intent. At the heart of Jinjing,
we develop a set of novel verification and synthesis techniques to
rigorously guarantee the correctness of update plans. In Alibaba,
our operators have used Jinjing to efficiently update their ACLs
and have thus prevented significant service downtime.

CCS CONCEPTS

• Networks→ Network management; Network reliability;

KEYWORDS

Access Control List; Domain Specific Language; Network Configu-
rations; Verification; Synthesis

ACM Reference Format:

Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo
Ye, Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, Da
Yu, Chen Tian, Haitao Zheng, Ben Y. Zhao. 2019. Safely and Automati-
cally Updating In-Network ACL Configurations with Intent Language. In
SIGCOMM ’19: 2019 Conference of the ACM Special Interest Group on Data
Communication, August 19–23, 2019, Beijing, China. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3341302.3342088

†Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’19
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5956-6/19/08. . . $15.00
https://doi.org/10.1145/3341302.3342088

1 INTRODUCTION

In-network Access Control Lists (ACLs), which are configured in
network devices, play a critical role in ensuring network-wide con-
nectivity, security, and reliability. Compared with other ACLs, such
as end-host firewalls, in-network ACLs filter unwanted traffic early
on by offering high-throughput, distributed traffic control in the
backbone and edge networks, effectively protecting core services.
Current global service providers widely employ in-network ACL
configurations in the management of their networks.

In recent years, in-network ACL rules in the modern Wide Area
Networks (WANs) are growing increasingly complex due to the
following three reasons: (1) cloud-scale WANs today are constantly
evolving in size and complexity; (2) their hosted services are also
becoming increasingly sophisticated, creating complicated network
dependencies; and (3) in-network ACL rules across thousands of
devices are tangled with numerous routing paths, giving rise to
very complex logical relations.

As a result, such complexity of ACL rules presents significant
challenges to the process of updating ACL configurations: updat-
ing ACL configurations in the WAN— a frequently needed network
operation—is error-prone, and even a single ACL misconfiguration
may lead to service disruptions.

Alibaba is one of the largest global service providers, and is of-
fering tens of diverse global services. We are also faced with the
above-mentioned ACL update challenges in our global-WAN man-
agement. For example, as new services are constantly deployed in
our WAN, our network operators are frequently asked to update
the ACL rules to permit new IP prefixes; however, updates like
these often produce unexpected side effects elsewhere. As another
example, in one of our recent WAN upgrades, our operators were
asked to migrate ACL rules from a layer of core routers to a group
of specific gateways with the aim to reassign the core routers as
the provider-edge (PE) routers, while preserving traffic reachabil-
ity. Since the migration involves the reconfiguration of 30% of all
routers in our global WAN, each of which managing thousands
of routing paths, it took operators multiple weeks to design the
migration and roll-back plans, to discuss and assess the plans, and
finally to execute the operation. Despite efforts such as these, ACL
updates still run the risk of containing errors that could cascade
into worst-case scenarios for the operator.

This stark reality calls for an automated system to increase the
efficiency and correctness of our network operators’ work, one that
can advise our operators to automatically update ACL configura-
tions based on their intent.

https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1145/3341302.3342088

SIGCOMM ’19, August 19–23, 2019, Beijing, China Tian et al.

1.1 Our Approach: Jinjing

This paper presents Jinjing, a system that automatically gener-
ates ACL update plans based on our operators’ high-level intent.
Jinjing offers an intent language, named LAI, with natural prim-
itives, which our operators can use to express their objectives in
ACL configuration update. Then, Jinjing parses the LAI-program
and automatically generates update plans satisfying the expressed
intent.

An LAI-program should contain three parts: region, requirement,
and command. Region specifies an update scope and what devices
are allowed to update. Requirement describes the desired reach-
ability for an update. For example, requirements can mean 1) to
preserve reachability during ACL migration, or 2) to permit a new
prefix in the updated ACLs, while keeping all other reachability
the same. Command defines specific operations to be performed
under the constraints specified by region and requirement. After
surveying our network operators, three operation primitives with
increasing degrees of automation are designed: check, fix and
generate. Figure 3 shows an example LAI program.

The design of the three operations—check, fix and generate—
presents their own challenges.
Primitive: check. This primitive aims to check whether an up-
dated ACL configuration achieves the desired reachability, meaning
it satisfies the reachability specified in the intents while preserv-
ing the original properties (i.e., without side effects). This is chal-
lenging because we not only need to check whether the desired
reachability is satisfied, but also whether there are any side effects.
Unfortunately, state-of-the-art solutions are insufficient. Specifi-
cally, existing configuration verification techniques (e.g., firewall
and router configuration verification [12, 13, 15, 23, 28, 34]) check
the reachability of a given individual prefix or a pair of routers
(i.e., “can A talk to B?”), rather than whether all prefixes or pairs of
routers achieve the desired reachability within one-run. In other
words, using the state-of-the-art verification tools, we have to enu-
merate all prefixes and all paths to check their reachability of the
two network snapshots before and after the update. This is prohibi-
tively expensive. While a recent verification tool, Minesweeper [1],
can check the desired reachability of multiple packets and paths
within one-run, Minesweeper scales to hundred devices—far short
of the scale of WAN [2]; meanwhile, due to the asymmetry of our
WAN, compression techniques [2] cannot be used to speed up the
state-of-the-art verification tools in our WAN.

We address this challenge in two steps. First, we propose a novel
theorem (Theorem 4.1) to help us identify a small set of ACL rules
affected by the update. Then, we only need to encode a small “delta
” formula rather than a big formula, like Minesweeper, representing
the entire ACL configurations across many routers. Solving such a
small formula is very efficient.
Primitive: fix. For any update that fails to achieve the desired
reachability, thefix primitive generates a fixing plan that repairs the
violation. Similar to the checking case, existing control plane repair
efforts, like CPR [14], can only repair the reachability violation of
single prefix or packet, rather than fixing all violations in an update.

We address this challenge with the help of check. We first use
check to efficiently get counter examples, then group all counter
examples with the same path decision into several equivalence

classes, represented in ACL rule format. To decide where to place
rule-formed fixes for these classes, we build a formula that models
the desired reachability, and then combine the formula with con-
straints that describe where to place each fixing rule. Solving this
combined formula tells us how the fixing rules should be added.

Primitive: generate. This primitive generates ACL configurations
from scratch. Related work falls into configuration synthesis area.
Specifically, the state-of-the-art configuration synthesis tools (e.g.,
Propane [3], PropaneAT [4], SyNET [10] and NetComplete [11])
offer some inspirations. However, these tools are focused on gener-
ating configurations for specific network protocols such as BGP and
OSPF. Because their synthesis algorithms heavily rely on protocol-
specific features (e.g., BGP update propagation), they cannot be
easily extended to synthesizing ACL-level configurations. Although
SyNET [10] is able to synthesize general in-network configurations,
SyNET scales poorly to large networks [11].

To generate ACLs from scratch in a scalable way, we need to
find for each device a suitable ACL decision function for all packets
(i.e., permit or deny) in order to achieve the desired reachability.
However, this is hard because finding such decision functions re-
quires us to enumerate all packets and all devices, which is quite
time-consuming. Even with the decision functions, the second chal-
lenge of translating them into ACLs is non-trivial. We tackle both
of the above challenges by grouping packets based on the ACL
equivalence class, thus greatly reducing the search space. More
importantly, the decision functions on ACL equivalence classes
can be naturally translated to well-formed ACL rules, solving our
second challenge. We further propose optimization techniques to
improve scalability.

Real-world deployment. Alibaba’s network operators have used
Jinjing in managing their ACL update in ourWAN. Jinjing success-
fully prevents service downtime in their operations. Furthermore,
Jinjing is efficient in generating large-scale ACL update plans, tak-
ing less than 15 minutes in our global network. We discuss our
experience with Jinjing in §7 and §8.

2 BACKGROUND AND MOTIVATION

This section first describes what is in-network access control list in
§2.1, and then presents the motivation in §2.2.

2.1 Background: ACL

An access control list (ACL) is a sequential collection of permit
and deny conditions, called ACL rules. Packets to be permitted
(or denied) are identified in terms of their source/destination IP
addresses and ports, and protocol, i.e., a 5-tuple like ⟨sip, dip, sport,
dport, proto⟩.

Packet that comes into a router is compared to ACL rules from
top to bottom until it has a match. If no matches are found before
reaching the end of the list, the packet is either denied or permitted
by the default rule that matches all packets. For example, in Figure 1,
all the ACLs employ “permit all” as the default rule.

ACLs can be applied to both ingress and egress interfaces of a
router. They specify what traffic is allowed in or out of the device.
Such a feature should be explicitly specified by the operators when
configuring routers.

SIGCOMM ’19, August 19–23, 2019, Beijing, China

A
B

D

C

A1
A2

A4
A3

D1
D2

D3
C4

C1
C2

C3

B2

B1

1-7

2-7

5-7

1-3

2-71-6

1-6 deny dst 1.0.0.0/8
deny dst 2.0.0.0/8
permit all

deny dst 7.0.0.0/8
permit all

deny dst 6.0.0.0/8
permit all

4-7

Figure 1: Motivating example. Xi means the interface i of

router X . In this example, interfacesA1,C1 and D2 have ACL
rules. The number on each edge represents the routing di-

rections of the corresponding traffic; e.g., “1” represents the
traffic towards 1.0.0.0/8, “2” for 2.0.0.0/8, etc.

2.2 Motivation and Our Goal

Taking Figure 1 as an example, there are four routers in this small
sub-network. Ai means the interface i of router A. The number on
each edge represents the forwarding directions for different types
of traffic in the network. For example, “1-6” on the edge from A4 to
D1 means all traffic with destination “1.0.0.0/8” to “6.0.0.0/8” can be
routed to D1. Even for such a small network, ACL misconfiguration
can easily happen. Suppose the operator wishes to clean up all ACL
rules on device D, while preserving the packet reachability passing
through this subnet. Since D2 no longer holds the ACL to deny
traffic to 1.0.0.0/8 and 2.0.0.0/8, some other interfaces need to have
new ACL rules to serve this functionality. The operator may decide
to follow the common practice and deny such traffic on the gateway
interface A1. What she failed to realize is that, by moving the two
deny rules from D2 to A1, the traffic going to these prefixes can no
longer go through the path ⟨A1;A4; D1; D3⟩, violating the desired
packet reachability—Traffic 1 and 2 can originally exit the subnet
fromD3, but it fails after the update. Although errors like this can be
avoided by carefully planning ACL updates and checking through
all affected paths, thorough checking quickly gets impractical as
the network increase in scale.
Motivating scenarios for ACL update tasks.We surveyed our
network operators about typical ACL update tasks, and list the
most common (but not limited to) tasks:
• Opening/isolating traffic: Service deployments, retirements
and upgrades happen on a daily basis. Our operators are fre-
quently asked to allow or isolate certain traffic by modifying
ACLs, while preventing any side effect.
• Checking ACL updates: A typical ACL update requires our
operators to manually come up with an ACL update plan and
is, not surprisingly, error-prone. Our operators are in dire need
of a means to check whether the updated ACL configurations
violate the desired reachability.

prog ::= region; req; cmd LAI program
region ::= scope l ⟨n ⟩; allow l ⟨n ⟩ Defining scope and interfaces

allowed to modify ACL rules
req ::= modify l ⟨n ⟩ to l ⟨n′⟩ Specifying ACL updates

| control n→ n (isolate |open |maintain) h
Specifying desired reachability

cmd ::= check Checking desired reachability
| fix Generating fixing plan
| generate Generating new ACLs

l ⟨n ⟩ ::= nil | n and l Interface list
n ::= device : interface A set of devices holding ACLs
n′ ::= device′ : interface′ ACL-updated interfaces
h ::= src prefix | dst prefix Specifying src or dst prefix

Figure 2: Intent language LAI’s grammar.

• Correcting buggy ACL updates: The operators want to fix
buggy update plans, which fail to achieve the desired reachability,
without any side effect.
• ACL migration: Major changes like network upgrades require
operators to move ACLs from one group of devices to another
specified group, while maintaining the original reachability.
Any of the above network-wide ACL update operations, if not

done properly, could result in significant service downtime.
Goal. Our goal is to build a system that aids our operators to au-
tomatically handle their ACL updates. The operators only need to
provide their intent, i.e., the end requirements of ACL update tasks,
and then our system automatically generates a plan that meets the
operators’ intent in an efficient way. Such a system would signif-
icantly simplify the ACL update process, ensure the correctness
of ACL configurations, and minimize the burden placed on our
network operators.

3 JINJING OVERVIEW

Jinjing takes in a high-level ACL update intent, along with the
current network configuration and topology. Then, Jinjing gener-
ates the update plan satisfying the intent. In this section, we detail
the design of intent language, named LAI (§3.1), with a running
example to show how an operator expresses an ACL update task in
LAI (§3.2). Finally, we present our system model used in designing
the primitives of LAI (§3.3).

3.1 Intent Language: LAI

The operator is allowed to express diverse ACL update tasks with an
intent language, LAI (or Language for ACL Intents). Figure 2 shows
LAI’s grammar, which includes global variable node, list l ⟨node⟩
and primitives.

To write an LAI program, the operator needs to specify three
parts: region, req, and cmd, as shown in the first line of Figure 2. The
operator can express diverse ACL update tasks by combining these
commands (as shown in Table 1).
Region (region). To express an ACL update task, the operator
should specify a management scope, Ω, using scope. Typically,
a management scope could be a cluster, a layer of routers, an avail-
ability zone, or even the entire network. For devices out of this
scope, ACLs within the scope can be regarded as a black box, mean-
ing that traffic permitted on each link can be arbitrarily changed
as long as it has no unintended effect on traffic going through the
scope. For example, in Figure 1, the dashed circle is the specified

SIGCOMM ’19, August 19–23, 2019, Beijing, China Tian et al.

4. check

5. fix

Inconsistent

Need to fix: dst 2.0.0.0/8
 dst 1.0.0.0/8
Fixing plan:
Add permit dst 2.0.0.0/8 to A1'
Add permit dst 1.0.0.0/8 to A1'
Add deny dst 2.0.0.0/8 to A2

region

req

cmd

Input Program

Outputs

Network Config

and Topology
Our System

1. scope A*, B*, C*, D*
2. allow A*, B*

3. modify D2, C1, A1, A3
 to D2', C1', A1', A3'

Figure 3: Our running example. Our system takes the in-

put programandnetwork topology to generate update plans.

“A*” means all interfaces in A.

scope, and the operator wants to make sure traffic going fromA1 to
C3 and D3 has the desired reachability. In Jinjing’s usage, the scope
Ω totally depends on ACL update tasks in hand. allow defines a
set of interfaces where we are allowed to update ACL rules;
Requirement (req) offers the operator two ways to express her
update requirements: 1) updating ACL configuration and 2) up-
dating packet reachability. modify specifies ACL configuration
updates to be examined (i.e., l ⟨n⟩ and l ⟨n′⟩); control specifies the
desired packet reachability update, i.e., what traffic to isolate, open
or maintain. If control is not explicitly specified in an LAI program,
the original reachability passing through the given scope should
be maintained.
Command (cmd) specifies the update operations under the given
requirements. Our system can check if the specified ACL updates
achieve the desired packet reachability, fix the given ACLs by
adding rules on top, or generate new ACLs to achieve the de-
sired packet reachability. The abovementioned primitives offer the
operators a flexible ACL-update way to either manually write ACL
configuration updates and then check/fix, or automatically generate
ACLs from scratch.

In production networks, not all ACL updates are suitable to be
automatically generated due to the reasons such as maintainability
and operability. For example, when the operators try to manually
locate the root cause for some network failure, unreadable but
automatically-generated ACL rules may significantly affect the
diagnosis progress. As a result, over-automation may create the
potential barriers for the maintainability and operability of ACL
configurations. We, therefore, offer different primitives (e.g., check,
fix, and generate) with increasing degrees of automation, rather
than dropping all update tasks to a single generate primitive.
Summary. Table 1 shows how to combine different primitives to
write LAI programs for common ACL update tasks.

3.2 A Running Example

Suppose in Figure 1, the operator wants to “clean up” the ACLs
on device C and D, so that she moves “deny dst 1.0.0.0/8, deny
dst 2.0.0.0/8” from D2 to the top of A1’s ACL, forming an updated
ACL denoted as A′1, which includes a total of four rules: “deny dst
1.0.0.0/8, deny dst 2.0.0.0/8, deny dst 6.0.0.0/8, permit all.” And she
also moves “deny dst 7.0.0.0/8” from C1 to interface A3 to form A′3.
With Jinjing, the operator writes the LAI program as shown in
Figure 3.

The program specifies scope involves all the interfaces ofA, B,C ,
and D (i.e., the dashed circle in Figure 1). Since she wishes to clean
up C and D, only interfaces on A and B are allowed. Themodify

involves setting D2 and C1 to D ′2 and C ′1 which permit all traffic,
while changingA1 andA3 to include the additional deny rules. Note
that since no control primitive is explicitly used, the desired reach-
ability is to keep original packet reachability. After specifying the
update requirement, she then checks whether the update achieves
the desired reachability, in this case, the original traffic reachability.
As the system outputs “inconsistent” after checking, she goes on
to fix the update. Our system returns a fixing plan as shown in
Figure 3, which adds the rules “permit dst 2.0.0.0/8” and “permit dst
1.0.0.0/8” to A′1. Note that the fixed ACLs may contain redundant
rules which can be further simplified.
Roadmap. The example above belongs illustrate how Jinjing han-
dles the checking and fixing of ACL update plans. Table 1 summa-
rizes the LAI primitives used in this example in row one, and also
lists how other common ACL update tasks (listed in §2.2) can be
expressed using an LAI program.

Making primitives (e.g., check, fix, and generate) functionally
correct and efficient is challenging, because they entail verification
or synthesis tasks in a large network. In §4, §5 and §6, we use the
three ACL update tasks in Table 1 as examples, respectively, and
detail the designs of the highlighted primitives.

3.3 System Model

Before elaborating on the primitives’ designs, we introduce some
basic concepts and definitions used throughout the paper, with
Table 2 defining the basic symbols.
ACL and ACL decision model. We use Lξ to denote the ACL
applied to interface ξ . For example, in Figure 1, LA1 denotes an
ACL applied to interface A1 consisting of two ACL rules: “deny dst
6.0.0.0/8” and “permit all.” fξ (h) is used to denote a boolean function:
given a packet h, whether the decision of Lξ on h is permit (return
TRUE) or deny (return FALSE). We call fξ the decision model of
ACL Lξ .
Border interface. For an interface ξ of some device in the given
subnet scope Ω, if ξ receives/sends traffic from/to outside Ω, ξ is
called a border interface. In Figure 1, interfaces A1, C3, and D3 are
border interfaces.
Path and path decision model. Given a pair of border interfaces
(e.g. s and d) with respect to Ω, a path p is a list of device in-
terfaces from s to d . Note that a path’s source and destination
must both be border interfaces. Consider the example in Figure 1.
There are three paths from A1 to D3: p0 = ⟨A1;A4; D1; D3⟩, p1 =

⟨A1;A3;C1;C4; D2; D3⟩ and p2 = ⟨A1;A2; B1; B2;C2;C4; D2; D3⟩.
We define a path p’s path decision model, cp , as: the conjunction

of ACL decision models of all the interfaces on p. Formally, a path

Table 1: Primitives for common update tasks. Highlighted

primitives detailed in corresponding sections.

ACL Update Tasks Primitives Used Sec.

ACL update plan checking
and fixing

scope, allow, modify,
check, fix §4

ACL migration scope, allow, modify,
generate

§5

Opening/isolating traffic
for service

scope, allow, control,
generate §6

SIGCOMM ’19, August 19–23, 2019, Beijing, China

Table 2: Important Symbols

Symbol Type Description

h bool vec a packet header (or packet)
L list an ACL containing a list of ACL rules

Lξ list the ACL applied to interface ξ

fξ (h) bool func the decision model of the ACL Lξ
on a packet h, i.e., permit or deny

LΩ set the group containing the ACLs of all
the devices in a specified subnet Ω

FΩ set the set of decision models of ACLs in LΩ
PΩ set all the paths in the subnet Ω

cp (h) bool func the aggregated decision model (path
decision model) of all ACLs on path p

дi; j (h) bool func the forwarding model from interface i
to j return TRUE or FALSE

GΩ set the set of all forwarding models in the subset Ω
mj (h) bool func whether rule j matches h

p’s path decision model c is:

cp ,
Û
i ∈p

fi (1)

As shown above, a path’s decision model is a boolean function that
tells whether an input packet h is permitted or denied by this path.
For instance, p0’s decision model is: cp0 = fA1 ∧ fA4 ∧ fD1 ∧ fD3 .
ACL group and update. For a given subnet Ω, the ACL group for
this subnet,LΩ , contains the ACLs of all interfaces in Ω. In Figure 1,
LΩ = {LA1 ; LC1 ; LD2 }. We use LΩ and L′Ω to represent the ACL
groups before and after update, in Ω, respectively. A decision model
group FΩ is defined as a set containing the ACL decision models
of all interfaces in Ω.
Packet reachability consistency.When control is not specified,
our update needs to achieve consistency with the original reachabil-
ity, defined as packet reachability consistency. In the given subnet
Ω, packet reachability consistency between two ACL groups, LΩ
and L′Ω , is achieved, if and only if each path p’s decisions on all
traffic through p do not change if we update LΩ with L′Ω .
Desired reachability consistency.When control is specified, we
adopt a modified definition of consistency. In the subnet Ω, desired
reachability consistency is achieved, if and only if, for each path p,
its decision model based onL′Ω is equivalent to the desired decision
model, which is derived fromLΩ and updated based on the control
specifications.

For better clarity, we focus on packet reachability consistency in
§4 and §5 and discuss how our designs can be extended to support
desired reachability consistency in §6.

4 ACL UPDATE CHECKING & FIXING

We now start by explaining how the check primitive verifies manu-
ally written ACL configuration updates (§4.1), and when an update
fails the check, how fix is performed to patch it up (§4.2), using the
running example from §3.2.

In our example first introduced in §3.2, since control is not speci-
fied in the requirement part, check and fix primitives check and fix
the packet reachability consistency, respectively—i.e., whether the
reachability preserves before and after the ACL update. We describe
a trivial way to extend check and fix for the desired reachability
case in §6.

4.1 Primitive Design: check

check takes as inputs: 1) a scope Ω specified by the scope require-
ment, and 2) ACL groups before and after the update, LΩ;L′Ω ,
which are specified by the update requirement.

In addition, check extracts all traffic (e.g., Traffic 1-7 in the Fig-
ure 1) entering Ω from our internal IP management system. Cloud
providers today maintain their own IP management systems used to
store data like IP prefixes and routing tables, and extracting traffic
based on this IP information is trivial in practice.
Forwarding equivalence class.We use boolean functions дi, j (h)
to model the forwarding behavior. Specifically, дi, j (h) represents
whether interface i forwards a packet h to interface j . We use GΩ to
denote the set of all дi, j , where ⟨i; j⟩ is a directed link in the subnet
Ω. Given two packets hx and hy , if Equation (2) returns TRUE, we
say hx and hy belong to the same forwarding equivalence class.Û

д∈G

(д(hx) = д(hy)); (2)

We use [h]FEC to denote the forwarding equivalence class (FEC)
exemplified by h. For example, there are five FECs in our example:
[1]FEC = {1}, [2]FEC = {2; 3}, [4]FEC = {4}, [5]FEC = {5; 6} and
[7]FEC = {7}.

We also defineψ[h]FEC (hi) as a boolean function, which indicates
whether a packet hi belongs to the FEC [h]FEC.
Basic version. The intuition of check’s basic design is to first clas-
sify all traffic entering the given scope into forwarding equivalence
classes, and then use an SMT solver to check the packet reachabil-
ity consistency for each forwarding equivalence class. Algorithm 1
details the design.

Initially (line 1), we encode LΩ and L′Ω to their decision model
sets FΩ and F ′Ω , respectively. Then, we find all paths in Ω, putting
them in P (line 2)1. Next, we get E which contains the FECs of all
traffic entering Ω (line 3-5).

For each FEC, [hi]FEC in E, we take the following two steps:
• Step 1 (line 8-10): We iterate over all paths p in Ω, and check if pi
allows [hi]FEC to go through Ω, i.e., entering s and successfully
leaving from d . If so, we put pi in a set Y.
• Step 2 (line 11-13): With FΩ , F ′Ω , and P, we can get cp and c ′p
by Equation (1). Consistency for [hi]FEC is achieved when and
only when LΩ and L′Ω behave the same on all paths inY. Thus,
we use SMT solver (e.g., Z3) to check the packet reachability
consistency of [hi]FEC by the equation:

'›«
Ü

p∈Y

¬

�
cp ⇔ c ′p

�“fi‹ ∧ψ[hi]FEC (3)

If any of the above verifications are satisfiable, that means LΩ
and L′Ω are making different decisions for some packets on
certain paths—in this case, the operator launches afixing process
(§4.2); otherwise, L′ maintains packet reachability consistency.
In theory, classifying equivalence classes may produce explosive

growth in number of FECs. For example, n randomly generated

1Cloud-scale networks are typically structured and the topology information is well
managed, so that paths are enumerable in polynomial time, from the perspective of
routing DAGs.

SIGCOMM ’19, August 19–23, 2019, Beijing, China Tian et al.

Algorithm 1: Basic version: Packet reachability checking
Input: LΩ , L′Ω : ACL groups before and after update.
Input: XΩ : The set of traffic entering Ω.
Output: Consistent, or Inconsistent.

1 FΩ ← LΩ , F′Ω ← L
′
Ω

2 P ← find all p in Ω
3 E ← ∅
4 foreach x ∈ XΩ do

5 E .append([x]FEC)

6 foreach [hi]FEC ∈ E do

7 Y ← ∅

8 foreach pi ∈ P do

9 if pi allows packets in [hi]FEC to pass through Ω then

10 Y.append(pi)

11 r ← solve '›«
Ü
p∈Y

¬

�
cp ⇔ c′p

�“fi‹ ∧ψ[hi]FEC via SMT solver

12 if r is satisfiable then
13 return Inconsistent

14 return Consistent

routing rules may lead to unavoidable 2n equivalence classes in
the worst case. However, in a well-organized cloud-scale network
where traffic is grouped and converged, we have never observed
the equivalence class explosion in practice. We discuss this more in
§9.
Example. In the §3.1 example, when we look at [2]FEC = {2; 3},
which enters Ω at interface A1 and leaves from D3. There are
two paths p0 and p2 for [2]FEC: p0 = ⟨A1;A4; D1; D3⟩, and p2 =

⟨A1;A2; B1; B2;C2;C4; D2; D3⟩. Thus, Y = {p0;p2}, and Equation
(3) takes the form of (¬(cp0 ⇔ c ′p0) ∨ ¬(cp2 ⇔ c ′p2)) ∧ ψ[2]FEC .
Since “deny dst 2.0.0.0/8” is moved from D2 to A1, the reachability
for traffic going to 2.0.0.0/8 (i.e., Traffic 2) on p0 is changed from
cp0 = TRUE to c ′p0 = FALSE, making Traffic 2 a valid solution for
Equation (3). This indicates that the current update plan violates
the consistency of Traffic 2.
Speeding up basic Algorithm 1 via differential rules. Because
many ACL updates only change a small set of rules, it is a waste
to encode the entire ACL into a decision model for Equation (1),
especially since solving such a huge formula via SMT solver is
time-consuming. We therefore optimize Algorithm 1 by defining
two important terms. One identifies the set of rules that are directly
removed or added, and the other filters out rules that have no
overlap with these rules.

Definition 4.1. Di�erential ACL rules. Given two ACLs L and
L′, the differential ACL rules between L and L′ is

DL,L′ ,
�
L − L

−→
∩L′

�
∪

�
L′ − L

−→
∩L′

�
; (4)

where −→∩ is the Longest Common Sequence (LCS) of L and L′.

Definition 4.2. Related Rules. Consider an ACL L. For a set of
ACL rules S , its related rules in L are those that overlap with at least
one rule in S :

R(L; S) , {k ∈L : ∃k ′ ∈S(mk ∧mk ′ is satisfiable)}: (5)

Heremk (h) is a function that tells if a packet h can be matched
by rule k . Only when rule k and k ′ overlap, canmk ∧mk ′ be TRUE.

Theorem 4.1. Consider two ACLs L and L′. L is consistent to L′ if
R(L; DL,L′) is consistent to R(L′; DL,L′).

Proof. DenoteH as the set of packets that can bematched by dif-
ferential rules, i.e.,H = {h :

Ô
i ∈DL;L′

(mi (h)∨m′i (h)) is satisfiable},
wherem′i (h) is a boolean function indicating whether rule i in L′

matches h. Considering a packet header h, there are two possi-
bilities. If h ∈ H , all possible rules it can match belong to either
R(L; DL,L′) or R(L′; DL′,L), so that the equivalence of R(L; DL,L′)

and R(L′; DL′,L) implies the same action of L and L′ on h. If h < H ,
all possible rule it can match in L and L′ are same, and the action is
therefore also the same. □

Following the spirit of Theorem 4.1, we optimize Algorithm 1
by preprocessing inputs LΩ and L′Ω , and filtering out unrelated
rules, thus “feeding” smaller ACLs to Algorithm 1. Specifically, we
first obtain the sets of rules that are added or removed, by getting
DL,L′ and DL′,L for all (L, L′) pairs in LΩ and L′Ω . Second, taking
the union over all the differential rules gives us a set DiffΩ , which
contains all rules added or removed by the update in Ω. Next, we
use DiffΩ to simplify each Li in LΩ based on Definition 4.2, and put
the result R(Li ;DiffΩ) in a set named RL ; similarly, we can also get
another set RL′ containing all the simplified L′ (in L′Ω). Finally,
we replace Algorithm 1’s inputs LΩ and L′Ω with RL and RL′.

Using differential rules significantly reduces the size of cp and
c ′p , because the inputs only contain differential and related rules.
Thus we can solve Equation (3) much faster.
ACL decision model optimization. The prior decision model
encodes ACL rules sequentially according to their priority, resulting
inO(n) search depth in the SMT solver [39]. Inspired by tournament
sort algorithm, we employ a dependency tree structure to replace
the previous sequential encoding. This optimization reduces the
average search depth to O(logn).

4.2 Primitive Design: fix

Once inconsistency is detected, the operator can use the fix prim-
itive to correct the inconsistency. This consists of two phases:
seeking neighborhoods and generating a fixing plan.
Seeking neighborhoods. If there is an inconsistency, the SMT
solver can only return us one solution, e.g. h, which is just one
of the root causes causing the ACL to be inconsistent. To get all
the root causes, we first “enlarge” the obtained solution to cover
a set of packets resulting in the same inconsistency, called h’s
neighborhood, and then exclude this neighborhood (including h
itself) from the next iteration. We repeat the above process, until
no inconsistency can be found, obtaining all the neighborhoods.
Note that enlarging a solution is necessary; otherwise, we need
over 1031 iterations in the worst case.

To get h’s neighborhood, we aim to find an ACL rule tuple
⟨sip;dip; sport ;dport ;proto⟩, encoded asm, so that all packetsmatch-
ing the tuple can be handled in the same way as h is, which means:

∀h′; m(h′) →
'›«h′ ∈ [h]F EC ∧

Û
f ∈FΩ∪F′Ω

�
f (h) = f (h′)

�“fi‹ : (6)

SIGCOMM ’19, August 19–23, 2019, Beijing, China

We iteratively perform binary search on possible expansions of
each field in the tuple (e.g., different IP prefix masks for sip), and
identify the largest expansion that satisfies Equation (6). The set of
packets matched by the resulting tuple forms the neighborhood of
h, denoted as [h]N .
Fixing plan generation. After getting all neighborhoods, we seek
to generate a fixing plan for each of them. So we need to find out
how they should be handled (permitted or denied) on each interface
to achieve consistency, and then add high-priority fixing rules on
the interfaces.

Specifically, given each neighborhood [h]N , we use SMT solver
to get the decision (permit or deny) on [h]N for each target in-
terface ξ so that the reachability of [h]N can be consistent with
the original. Such a “decision” is defined as a boolean function,
D[h]N (ξ). Given an interface ξ , D[h]N (ξ) returns TRUE or FALSE
to represent whether [h]N should be permitted or denied by ξ after
the update.

According to packet reachability consistency, for each path p,
the decision on [h]N after the update should be the same as before,
which is cp (h). Meanwhile, the updated decision can be represented
using D[h]N :

c ′p (h) ,
Û
ξ ∈p

D[h]N (ξ): (7)

Thus we use the above cp (h) and c ′p (h) to construct Equation (3),
and use an SMT solver to get each interface ξ j ’s D[h]N (ξ j), which
can tell whether ξ j should permit [h]N or not.

After fixing all neighborhoods, we get a final ACL update plan
that guarantees packet reachability consistency.
Extensions. During fixing, we can support three additional func-
tions: constraints on ACL placement, optimization for minimal
changes, and final ACL simplification.
• Constraints on ACL placement. Because the operator can use
the allow to specify which interfaces can be changed during
fixing, such specifications are translated into additional con-
straints in the SMT solver when solving for Equation (3). In
our example, since we are not allowed to fix device C and
D which are permitting all traffic, we append the constraintsÓ4

i=1D[h]N (Ci) = TRUE and
Ó3

i=1D[h]N (Di) = TRUE, demand-
ing that the neighborhood be permitted on C and D.
• Optimization for minimal changes.When using the SMT solver,
we can additionally specify an objective to minimize the number
of interfaces we need to fix.
• Simplifying the final ACL. The fixing process may render some

rules in the original ACL redundant.We design and apply an ACL
simplification algorithm that can remove the maximal number
of rules from any ACL while preserving the decision model.

AFixing example.Continuing our example, we know that moving
the rule “deny dst 2.0.0.0/8” to interfaceA1 causes inconsistency. To
fix the inconsistency, we first solve Equation (3) to get a solution that
makes this equation true, which is a packet in Traffic 2. Then, the
entire Traffic 2 is identified as a neighborhood. Next, our algorithm
continues to check whether Equation (3) is satisfiable, finding the
other remaining neighborhood, Traffic 1. Finally, we solve the SMT
problem for both neighborhoods, starting with Traffic 2. Recall

that we want to clean up device C and D, we thus add additional
constraints to ensure D[2]N is always TRUE for interfaces onC and
D. The SMT solver returns an optimal solution: D[2]N (A2) = FALSE,
and other variables are TRUE. Comparedwith ACLs after the update,
the actions on A1 and A2 has changed, so that we need to add a
rule to permit Traffic 2 in interface A1, and add a rule to deny
Traffic 2 on interface A2. Similarly, we find that A1 should add a
rule to permit Traffic 1. After fixing, interface A1’s ACL should be
“permit dst 1.0.0.0/8, permit dst 2.0.0.0/8, deny dst 1.0.0.0/8, deny dst
2.0.0.0/8, deny dst 6.0.0.0/8, permit all”; A2’s ACL should be “deny
dst 2.0.0.0/8.” Finally, A1’s ACL is further simplified by removing
the first four redundant rules.

5 ACL MIGRATION

We now detail the design of the generate primitive, based on
an ACL migration task example. Suppose in Figure 1, an oper-
ator is asked to remove ACLs from interfaces in S = {A1; D2}
(called source interfaces) and generate new ACLs at interfaces in
T = {C1;C2; D1} (called target interfaces), while preserving packet
reachability.

To express this intent, the operator sets the scope to all inter-
faces in Figure 1, modify S to permit all traffic, while allowing
new ACLs to be generated at T . Again, because this LAI program
does not use control, we migrate ACL rules while keeping packet
reachability. We describe how to extend generate for the desired
reachability case in §6.

Astrawman solution.To generate ACLs, we need to knowwhether
each packet should be denied or permitted on each interface. A
strawman solution is to adopt the fixing approach in §4.2 on all
neighborhoods in the entire space. However, this yielded millions
of neighborhoods in our network.

Intuition of generate design. We need a more efficient way to
divide packets. Since the migration task seeks to replicate the effect
of the original ACLs, a natural choice is to use these ACLs them-
selves to divide packets into a small number of classes (§5.1). By
solving the placement problem for each class, we can learn which
interface should deny or permit which class (§5.2). In cases where
ACL-based classes are too coarse-grained to provide a valid solution,
we introduce routing information to loosen placement constraints
and make decisions on the more fine-grained classes (§5.3). When
all decisions are computed, we can then translate the decisions into
ACLs (§5.4).

We now detail the workflow of generate.

5.1 Deriving ACL Equivalence Classes

First, we assign all traffic in the given scope Ω to different ACL
equivalence classes (AECs), and derive these AECs. An ACL equiv-
alence class, [h]AEC—different from the forwarding equivalence
class defined in §4.1—means all traffic belonging to the class result
in the same ACL decision, exemplified by packet h. In our migration
example, the seven types of traffic can be assigned to four AECs,
so that we derive these four AECs, as shown in Table 3. Due to the
redundancy in ACL usage and the commonality of ACL goals, the
growth rate of AECs we experienced is at most polynomial.

SIGCOMM ’19, August 19–23, 2019, Beijing, China Tian et al.

Table 3: ACL equivalence class for Figure 1 example.

Class Traffic A1 C1 D2

[1]AEC Traffic 1-2 permit permit deny
[3]AEC Traffic 3-5 permit permit permit
[6]AEC Traffic 6 deny permit permit
[7]AEC Traffic 7 permit deny permit

5.2 Solving ACL Equivalence Classes

With the derived AECs (e.g., [h]AEC) in hand, the goal of this step is
to solve the decision functionD[h]AEC for each of the derived AECs
to determine how it should be handled by each interface, similar to
how D[h]N works in §4.2.

Before the migration, [h]AEC is permitted on path p if and only
if cp (h) is TRUE, which we have defined in Equation (1).

After the migration, the source interfaces permit all traffic, while
the decision on target nodes is changed based onD[h]AEC . Thus, we
define the decision model of interface ξ after the migration as f ′ξ ,
and the updated path model of path p as c ′p . We have:

f ′ξ (h) ,

8>>><>>>:
TRUE if ξ ∈ S
D[h]AEC (ξ) else if ξ ∈ T
fξ (h) otherwise

(8)

c ′p (h) ,
Û
ξ ∈p

f ′ξ (h) (9)

Note that this definition for AEC and f ′ξ (h) is based on themigration
example where the updated ACLs are permitting all traffic, but it
can be easily extended to cover arbitrary updates. The details are
omitted due to space constraints.
Solving for AEC-level consistency. To achieve packet reacha-
bility for each AEC, [hi]AEC , we use SMT solver to find D[hi]AEC .
Thus h is handled consistently on all paths:Û

p∈PΩ

cp (hi) ⇔ c ′p (hi) (10)

Suppose we wish to compute a solutionD6 for [6]AEC in Table 3.
Since class [6]AEC is denied onA1, it needs to be denied on all paths
involvingA1. Thus,D6 has to be FALSE at least on one interface for
each path. Thus, by solving the above constraints via SMT solver,
we get that class [6]AEC should be denied on all target interfaces,
C1, C2 and D1.

5.3 Solving Dataplane Equivalence Class

If we can successfully solve all the derived AECs, we can directly
enter the ACL generation phase (§5.4). However, some equivalence
classes might be unsolved (i.e., unsat by SMT solver), in which case
the constraints need to be loosened by disregarding unused paths.
For the migration example, when we try to compute a solution for
class [1]AEC, which is denied by D2 (see Table 3), we need to ensure
it is denied on path ⟨A1;A3;C1;C4; D2; D3⟩, among which only C1
is a target interface, so [1]AEC has to be denied by C1. However, as
it is not denied along path ⟨A1;A3;C1;C3⟩, Equation (10) dictates
that it be permitted by C1 after migration. Thus, there is no valid
solution for the ACL equivalence class [1]AEC.
Dataplane equivalence class (DEC). Since different packets in
the same AEC may be allowed on different paths, they should be

solved separately. We, therefore, take into account routing infor-
mation and split such “unsolved” AECs into dataplane equivalence
class (DEC). For a DEC, [h]DEC, all packets belonging to this class
result in the same decision by ACL and routing configurations,
exemplified by packet h. In other words, DEC is working as a con-
junction of FEC (defined in §4.1) and AEC (defined in §5.1).

When we take into account the dataplane information, we can
derive DECs for Traffic 1 and 2 separately, which we denote as
[1]DEC and [2]DEC. In this case, [2]DEC can be forwarded from A2
to B1, but [1]DEC cannot.
Solving for DEC-level consistency. Solving DECs has two steps.
First, for each unsolved AEC, say [h]AEC, we divide these AECs into
DECs—like the case that we divide [1]AEC into [1]DEC and [2]DEC,
getting two DECs.

Second, for each derived DEC, we need to solve its corresponding
D[h]DEC , via SMT solver, to keep the packet reachability consistency.
Specifically, for each [hi]DEC, we iterate all the paths p in Ω and
check if pi allows [hi]DEC to go through Ω. If so, we put pi in a set
Y[hi]DEC . We then solve the formula Equation (10) while replacing
PΩ with Y[hi]DEC , thus solving D[h]DEC . If any of DECs does not
have a valid D[h]DEC , then there is no valid solution for the given
migration intent.

5.4 ACL Synthesis

After getting all the decisions D, we need to convert them to ACL
rules on target interfaces, C1, C2 and D1 in our example.
Step 1: Ordering AECs based on the sequence encoding. For
each AEC, say [hi]AEC, we use it to “hit” each of target interfaces,
say j , in Ω, and check which ACL rule in j can be hit by [hi]AEC. We
use the priority of the hit rule as the sequence number. In Table 4a
example, [6]AEC traverses the interfaceA1,C1, andD2, because only
these three interfaces have ACLs. As shown in Table 4a, [6]AEC hits
A1’s first rule, C1’s second rule, and D2’s third rule, so one entry
is generated for [6]AEC by joining the three rules, encoded as 123.
Since [1]AEC hits both the first and second rules in D2, two entries
are generated by joining the second rules in A1 and in C2, encoded
as 221 and 222 respectively. This way, we generate all the sequence
encoding numbers based on the AECs (as shown in Table 4b) and
sort them accordingly.
Step 2: Computing overlap field. For each row in Table 4b, we
compute the intersection of destination IPs of all rules in the se-
quence encoding. We call this intersection the overlap field. Sim-
ilarly, we also compute the overlap field of src-ip, src-port, and
dst-port. As shown in Table 4, because the first row records A1’s
first rule, C1’s second rule, and D2’s third rule, the overlap field of
the first row’s dst-ip is the intersection of 6.0.0.0/8, all, and all, i.e.,
6.0.0.0/8. Thus, we fill 6.0.0.0/8 in the overlap field column for the
first row.
Step 3: Synthesizing decisions. We use the DAEC results ob-
tained from solving ACL equivalence class step to as the deci-
sion for each AEC. For example, because D[6]AEC (C1) = FALSE,
D[7]AEC (C1) = FALSE, D[1]AEC (C1) = TRU E, and D[3]AEC (C1) =

TRU E, we fill “deny”, “deny”, “permit”, “permit” in the synthesized
decision’s C1 column in Table 4b. So far, we can synthesize ACL
for C1 as: “deny dst 6.0.0.0/8, deny dst 7.0.0.0/8, permit dst 1.0.0.0/8,
permit dst 2.0.0.0/8, permit all.”

SIGCOMM ’19, August 19–23, 2019, Beijing, China

Table 4: ACL migration for Figure 1 example: migrating ACLs from A1 and D2 to the rest of nodes in this subnet.

[6]AEC

Sequence encoding:
123

[1]AEC

… ...

Priority Action Dst-IP

A1
1 deny 6.0.0.0/8
2 permit all

C1
1 deny 7.0.0.0/8
2 permit all

D2
1 deny 1.0.0.0/8
2 deny 2.0.0.0/8
3 permit all

A1 d
C1 p
D2 p

Sequence encoding:
221
222

A1 p
C1 p
D2 d

(a) Generated sequence encoding. p denotes permit, and d denotes

deny.

Step1 Step2 Step3
Sequence
Encoding AEC Overlap

Field
Synthesized Decision

A1 C1 D2 C1 C2 D1
1 2 3 [6] 6.0.0.0/8 deny deny deny
2 1 3 [7] 7.0.0.0/8 deny permit permit
2 2 1 [1] 1.0.0.0/8 permit permit* permit
2 2 2 [1] 2.0.0.0/8 permit permit* permit
2 2 3 [3] all permit permit permit

(b) Synthesized ACLs. permit* means the permit is only partial (de-

tailed in §5.4 Step 4)

Step 4: Synthesizing ACL rules for DECs. Finally, we show how
ACLs can be synthesized when the decision is made on dataplane
equivalence classes. Take C2 as an example, we learn that it should
deny class [2]DEC and class [6]AEC. As class [2]DEC belongs to the
ACL equivalence class [1]AEC, this means part of [1]AEC is denied.
Therefore, the ACL synthesized for C2 in Table 4b is only an inter-
mediate result. We need to insert deny rules before the “permit*”
rules to reflect C2’s deny decision on [2]DEC. For each “permit*”
rule, we identify its intersection with the denied DEC and insert
rules before the “permit*” rule to deny the intersections. In our ex-
ample, the first “permit*” rule does not overlap with [2]DEC, thus no
action is needed. However, the second rule, “permit* dst 2.0.0.0/8,”
does overlap with [2]DEC, with the intersection being “dst 2.0.0.0/8.”
Hence, we insert “deny dst 2.0.0.0/8” above the “permit*” rule. In the
end, we can generate ACL for C2 as: “deny dst 6.0.0.0/8, permit dst
7.0.0.0/8, permit dst 1.0.0.0/8, deny dst 2.0.0.0/8, permit dst 2.0.0.0/8,
permit all.”

5.5 Optimization

While we can correctly generate ACL rules on target interfaces, the
current solution may not scale well in some cases. Thus we need
to design optimization schemes to greatly reduce run time and the
length of generated ACLs. The principle behind our optimizations
aims to simplify the complexity of generated ACL rules (e.g., mini-
mize the number of ACL rules and reduce unnecessary ACL rules),
thus reducing the number of clauses in SMT encoding.

Generating fewer ACL rules. Our algorithm (§5.4) may generate
many redundant ACL rules. For example in Table 4b, it is unnec-
essary for C1 to generate three permit rules: “permit dst 1.0.0.0/8,”
“permit dst 2.0.0.0/8” and “permit all,” because “permit all” alone is
sufficient. Thus we optimize the number of generated ACL rules.

For any interface, before generating ACL rules, we put all rows
in a set R as a candidate rule set. We iteratively check for each rule
ri ∈ R whether any r j ∈ R, meets both of the following conditions:
1) r j ’s sequence encoding number is lower than ri ’s, 2) ri and r j
have different decisions. If yes, outputting ri first may render r j
inconsistent. For example, in Table 4b, “deny dst 6.0.0.0/8” (as r j)
is encoded as 123, while “permit all” (as ri) is 223. Clearly, the two
conditions both hold, and “permit all” should not be placed before
“deny dst 6.0.0.0/8.” Thus, we remove “permit all” from R. After
all such ri are removed from R, we pick one rule (say rk) from R
that can cover the most rules in R, and generate it. For the rules
not covered, we repeat the above process until all rules are either
generated or covered.

Grouping ACL rules before sequence encoding. We optimize
step 1 in ACL generation (§5.4), by grouping ACL rules at source
interfaces to reduce the number of generated rows in Table 4b.
The insight is that consecutive rules with the same decision can
be regarded as one, since they belong to the same ACL equiva-
lence group and are interchangeable in position. For example, in
Figure 4a, on interface D2, we can group “deny dst 1.0.0.0/8” and
“deny dst 2.0.0.0/8” into one item. When combining groups, we also
take advantage of the fact that adjacent non-overlapping rules can
switch position regardless of decision type, thus enabling more ag-
gressive grouping. This optimization can yield 98.6% drop in number
of generated items per interface, significantly improving efficiency.

ACL search tree. Once we put ACLs into groups, our overlap
field computation in step 2 (§5.4), becomes computing the overlap
between two groups rather than computing the overlap between
two rules. We can speed up this process using a search tree. When
checking for overlapping fields across two trees, we work only on
subtrees that overlap with each other, thus significantly reducing
cost. We omit the details due to space constraints.

6 UPDATING REACHABILITY

Given control requirements, our system needs to achieve desired
reachability consistency, which is a modification on the original
reachability. The primitive control is used to specify the reachabil-
ity updates needed between a pair of interfaces. For example, for a
source and destination pair ⟨A1;C3⟩, the intent “control A1 → C3
open dst 6.0.0.0/8” expresses that the packets going to 6.0.0.0/8
should be permitted to go from A1 to C3. Similarly, if the intent is
to isolate, the specified traffic should not be able to go through
the given interface pair. When multiple intents for the same pair
of interfaces overlap with each other, their priority is determined
by the specification order. Thus maintain can take precedence
over other intents, and protect the original reachability from the
current update. For example, an operator may specify the intent as
“control A1 → C3 maintain dst 7.0.0.0/8” followed by “control
A1 → C3 isolate dst all”. This would mean for all paths between
A1 and C3, if any packet to 7.0.0.0/8 was originally permitted, it
should still be permitted after the update, while the traffic to all
other destination IPs should be blocked.

The control primitive can be supported by simply extending
existing designs of check, fix and generate. In principle, because
control does not affect the construction of c ′p , we still construct
c ′p like how we did for the packet reachability consistency. For cp ,
since cp is responsible for representing the desired reachability, we

SIGCOMM ’19, August 19–23, 2019, Beijing, China Tian et al.

should adapt cp based on the intent specified by control. With the
updated cp in hand, we can follow the methodologies used in §4
and §5 to achieve the desired reachability consistency.

We now detail how to obtain the updated cp . We start by pars-
ing all primitives (isolate, open, andmaintain), and encode the
update decisions into a decision model r (h) with three different
outputs “isolate,” “open” and “maintain,” respectively. Each path has
its own function rp based on its starting and ending interfaces. If
no change is specified, then decisions are maintained for all traffic.
Thus, we create an updated path model using rp as a constraint on
the original cp , and transform the packet reachability consistency
constraints to that of desired reachability consistency. In addition, a
few details need to be adapted in the original design. We need to
take all r functions into consideration when getting neighborhoods
for fix in §4.2, and when deriving AECs for generate in §5.1. For
check, “isolate” and “open” related prefixes need to be taken into
account when computing deferential rules in §4.1.

7 EXPERIENCEWITH JINJING

Jinjing has been deployed in Alibaba’s global WAN for several
months. It has successfully guided our operators in avoiding a lot
of potential critical service disruptions while managing network-
wide ACL configurations. This section first describes deployment
challenges, and then shows three real scenarios, from a small-scale
but frequently-happened scenario to a large-scale scenario Jinjing
was used in.

Deployment challenges. Jinjing’s deployment was faced with
many challenges, such as incomplete topology data, inaccurate
dependency collection, and tricky data formats. Given space con-
straints, we only discuss the main challenge: data sources Jinjing
relies on, (e.g., routing information and parsed configuration for-
mat), are incomplete or inaccurate in practice. For example, routers
in our WAN are provided by different vendors. They not only have
different configuration formats, but also contain various implicit
routing behaviors. This inaccurate information would significantly
affect the capability of Jinjing. To address this challenge, we de-
velop an internal auditing tool to timely monitor and manually
repair the quality of the data Jinjing relies on.

Scenario 1: Isolating service area. Managing (e.g., isolating or
opening) service traffic is one of the most common uses of Jinjing.
In one of our real-world traffic isolation events, a new service S
was deployed and some IP prefix (say, 1.2.0.0/16) is assigned to S .
Our operators want to isolate the traffic between S and device R3,
which is a gateway managing an important private subnet.

Between S and R3, there are two routers R1 and R2. Traffic be-
tween S and R3 are allowed to access both R1 and R2. The operator
cannot directly add a deny rule on R3 because it may have side
effects on un-recycled IP segments in R3’s internal network. Thus,
our operators write the following intent using LAI.
1. scope R1:*, R2:*, R3:*

2. allow R1:*-in, R2:*-in, R3:*-in

3. control R1:*,R2:* -> R3:*-out isolate from 1.2.0.0/16

4. control R3:*-in -> R1:*,R2:* isolate to 1.2.0.0/16

5. generate

As shown above, scope and allow specify that we should gen-
erate ACL rules on the ingress interfaces of R1, R2 and R3 without
touching any other interface or device. Line 3 isolates the traffic
from the subnet (managed by R3) to S , and line 4 applies to the
traffic in the reverse direction. Jinjing generates a valid plan within
a minute. The plan adds several lines of ACL rules to the ingress
interface of R3. We also asked our operators to manually write ACL
rules for this objective. It took them 100× more time to produce a
plan, because they need to check for potential side effects on all
paths. Because the above ACL update tasks occur hundreds of times
each month, Jinjing significantly reduces our management time.
Scenario 2:Hidden complexities inmovingACLs from ingress

to egress. Our global WAN employs many cells communicating in
a complex way, each using tens of gateways to control the traffic
that enters/leaves the cell. In an important network upgrade event,
our operators needed to relocate the ACLs of all gateways in the
hundreds of the cells from their ingress interfaces to their egress
interfaces. Such a seemingly innocuous move may block the traffic
between routers within this cell since the communication within
the cell only go through the gateways’ egress interfaces. Essentially,
the operators need to identify what traffic could be affected by the
migration, and decide how to offset the effect without introducing
new problems. Given the complexity and scale of our network—
hundreds of cells containing thousands of routers, it is difficult for
our operators to correctly complete this task. Initially, our opera-
tors spent multiple weeks manually producing a migration plan.
Before committing the plan, they used Jinjing’s check command
to check whether the update plan retains the packet reachability.
Inconsistency was reported within a minute by Jinjing, suggesting
that some traffic within many cells would be blocked after moving.
Then, within a few minutes, fixing plan were generated by Jinjing.
Without Jinjing, an incorrect migration like this would have caused
critical service disruption. In this scenario, it is unnatural for the
operators to directly generate an ACL update plan via generate, be-
cause the generated ACLs may look different from the original ACL
rules, and make those ACL configurations hard to be maintained.
Scenario 3: Migrating ACLs from a large scope of routers. A
third experience we would like to share is an event where our
operators needed to migrate the ACL rules out of a layer of core
routers in order to reassign them as provider-edge (PE) routers
supporting the MPLS protocol. This migration involves 30% of all
the routers in our WAN, each of which managing thousands of
routing paths and ACL rules. A network upgrade like this can
reduce expenses by replacing those core routers with much cheaper
ones with no ACL support. This task is of greater challenge than
the former two scenarios discussed above, since 1) the paths to a
gateway are controlled by multiple ACLs, and 2) different paths may
overlap with each other. Jinjing returned a secure migration plan
in a minute. Before Jinjing was developed, our operators typically
spent half a month in planning how to securely migrate the ACLs
without disrupting service.
Other experience: ACL rules generated by Jinjing vs. by the

operator. We comment briefly on how Jinjing-generated ACL
rules differ from ACL rules manually written by our operators.
In most cases, they are quite similar. For example, both our op-
erators and Jinjing prefer to add “permit” to allow certain traffic,

SIGCOMM ’19, August 19–23, 2019, Beijing, China

0.1

1

10

100

1k

1 3 5% 1 3 5% 1 3 5%

T
im

e
 (

S
e

c
o

n
d

s
)

Checking Time with Varying % of ACL Change

Basic Version of check
with Differential Rules and Optimization

largemediumsmall

(a) Consistency checking

1

10

100

1k

10k

1 3 5% 1 3 5% 1 3 5%

T
im

e
 (

S
e

c
o

n
d

s
)

Fixing Time with Varying % of ACL Change

Basic Version of fix
with Differential Rules and Optimization

largemediumsmall

(b) Fixing inconsistency

 0

 200

 400

 600

 800

 1000

small medium large

T
im

e
 (

S
e

c
o

n
d

s
)

Migration Time in Different Networks

Get AEC
Solve Constraints
Generate ACL

(c) Generate migration plan

 0

 200

 400

 600

 800

 1000

1 10 100 1 10 100 1 10 100

T
im

e
 (

S
e

c
o

n
d

s
)

Time Cost to Open Varying # of IPs

Get AEC
Solve Constraints
Generate ACL

largemediumsmall

(d) Reachability control (open)

Figure 4: Time cost of Jinjing operations in different network settings.

rather than removing “deny” from the original ACLs. However, they
differ in some other cases. Jinjing employs a set of optimization
approaches to compress generated ACL rules; while the operators
are inclined to write redundant rules for easier comprehension.

8 NETWORK-WIDE EXPERIMENTS

To understand the performance of Jinjing’s primitives, we carefully
choose representative sub-networks in our WAN as testbeds to
evaluate the scalability of the primitives, check, fix and generate,
for both modify and control.

Experiment setup. We take three sub-networks of different sizes
from our network (8%, 30%, and 80% of our WAN), representing
small, medium and large networks respectively. We have no access
to the remaining 20% due to company restrictions. They all have
layered topology and are connected to an external backbone net-
work. The ACLs and IP prefixes used in the experiments are taken
from real configurations in the selected networks, with thousands
of ACL rules placed across multiple layers. All our experiments are
run on a server with 128GB RAM and a 2.9GHz 4-core processor.

Checking ACL update plans and fixing. To evaluate the per-
formance of check and fix, we generate ACL update plans by
randomly perturbing 1%, 3%, and 5% of the rules in each router, and
use check to check whether the packet reachability is preserved
in the updated plans. In the case that the packet consistency is
violated, we run the fix primitive.

As shown in Figure 4a, the turnaround time is not affected by
the update percentage. This is reasonable, because once a single
inconsistency is detected, check warns and returns this violation.
We also observe that the turnaround time is one order of magni-
tude more efficient in computation than the basic version without
differential rules The check with differential rules takes less than
one minute for the largest setting.

Figure 4b presents the turnaround time of the fix operation
for different sub-networks. We observe increases in turnaround
time with higher ratio of perturbation, due to the increase in fixes
required. The use of differential rules and optimization speeds up
fixing by two orders ofmagnitude in bothmedium and large subnets.
Taking at most 10 minutes in total, check and fix work well in
assisting daily updates.

ACL migration. To evaluate the scalability of generate primitive,
we use the common scenario of ACL migration, where we move
all ACLs from middle layer to lower layers and examine the time
cost for each migration operation, as shown in Figure 4c. Three
steps are involved when performing migration: 1) deriving all ACL

equivalence classes 2) solve for each class and identify DECs when
necessary, and 3) generate ACLs from decisions on AECs and DECs.

As subnets increase in scale, migrations become more and more
costly as the generatedACL has to represent the decision of different
ACLs on different paths. Our optimization is able to mitigate such
complexity to some degree, reducing the run time and the length
of the generated ACL by two orders of magnitude, with the entire
operation taking less than 15 minutes for the largest network.
Reachability control. We also examine the scalability of our al-
gorithm when dealing with the control primitive. Due to space
constraint, we only show the result for control openwith the com-
mand generate. In our experiment, we apply the control open

intent to a randomly selected set from 1000+ IP prefixes announced
by each lower level device. To see how the LAI program size affects
performance, we choose three different settings, selecting 1, 10
or 100 IP prefixes respectively in each device. The time cost for
each scenario is detailed in Figure 4d. Compared to migration, the
time cost in deriving AEC is slightly higher since the reachability
control models, r , are taken into account when generating AEC,
as discussed in §6. On the other hand, the time cost in generating
ACL is significantly lower since this scenario benefits more from
our optimization algorithm, which is able to reduce the length of
the generated ACLs by up to four orders of magnitude.
Expressiveness of LAI. Table 5 shows the number of lines to write
the LAI program for our above experiments. Even with the largest
network setting, check, fix and generate for migration only need
about ten lines. Thus, using LAI is simple.

9 DISCUSSION

We discuss the details of important practical issues in this section.
Why our optimizations enable Jinjing to scale well? Gener-
ally, any SMT solver shares the worst case complexity of at least
O(2n), where n is the number of boolean variables. One may con-
fuse about how to measure the complexity of a verification problem,
because all algorithms unavoidably involve n variables, e.g., 104
variables for 5-tuples. However, in practice, the complexity of an
SMT problem is described as the number of recursive calls when
running a DPLL [8, 9] based SMT solver [30]. Less recursive calls
can make a problem solved faster.

Table 5: LAI program line count in experiments.

Network check & fix migration open 1 open 10 open 100

Small O(1) O(1) O(1) O(10) O(50)
Medium O(1) O(1) O(10) O(50) O(100)
Large O(10) O(10) O(10) O(100) O(500)

SIGCOMM ’19, August 19–23, 2019, Beijing, China Tian et al.

In fact, directly or indirectly, all optimizations in Jinjing aim at
reducing the recursive calls. For example, differential rules reduce
the chance of backtracking by reducing the clauses, which signifi-
cantly reduces recursive calls. Similarly, our new decision model
trades a larger width of DPLL searching tree for a smaller search-
ing depth. We observed recursive calls reduced by about O

�
k

logk

�
times in experiments, where k is the length of the largest ACL. This
is the reason why Jinjing scales well.
Can Jinjing work if the traffic class is unknown? AECs are
always known, because we can directly derive them from ACLs. So
we only discuss the cases when we cannot get FECs or DECs. For
check primitive, we cannot specify the traffic we verify without
FECs. Instead, we can directly verify all traffic, i.e., 0.0.0.0/0, on
each ACL individually, which is a sufficient condition (but much
stronger) for the reachability consistency. Note that it may cause
false positive, and possibly bring too much computation to the fix
primitive. As described in §5.3, the generate primitive can work
with only AECs. Some equivalence classes might be unsolved, be-
cause stronger conditions can make an SMT problem unsatisfiable.
Why do prior work on verification or synthesis work on fire-

walls not work in our scenario? While firewalls provide stan-
dalone access control, in-network ACLs filter traffics in a distributed
manner, so that we need to handle not only what to do, but also
where to do. An in-network ACL configuration update requires a
global view of the network, including topologies, routing tables
and traffic. Otherwise, a seemingly innocent rule can easily harm
other traffic unexpectedly. On the contrary, firewall verification
and repair efforts mainly focused on end-host control rather than
in-network information like routing and topology information.

10 RELATEDWORK

ACLplacement andmigration. Sung et al. [32] proposed a heuris-
tic algorithm for placing ACL rules on routers based on operators’
intent. Compared with Jinjing, we target different problems. First,
their approach does not support operations like reachability check-
ing and ACL migration, which are highly needed by our ACL man-
agement. Second, their approach is only scalable to a small local area
network. Finally, the correctness of their approach is not provably
guaranteed by a provable checker (like SMT solver).

Hajjat et al. [16] focused on automatically migrating existing
enterprise applications’ ACL rules to a third-party cloud platform,
while preserving the original security property. Zhang et al. [38]
proposed a linear-programming algorithm to optimize ACL place-
ment based on various constraints. Yoon et al. [35] designed a
heuristic algorithm to generate routing structures that minimize
the rules needed by each gateway. Nelson et al. [26] proposed an
approach to migrate the configuration from enterprise network to
an SDN network setting. Compared with Jinjing, the above efforts
target different problems from Jinjing’s.
Firewallmanagement. State-of-the-art firewall managementwork
mainly falls into two categories. First, many firewall verification
tools [5, 19, 23, 36] were developed to detect the faulty rules that
violate the operators’ intent; however, they only focused on check-
ing ACL rules on single firewall, rather than a distributed setting.
Second, firewall repairing tools [7, 17] fix faulty policies in a single

node. It’s hard to extend them to distributed setting, since those
tools fail to take into account the routing information.
Network configuration synthesis. SyNET [10] and ConfigAs-
sure [25] focused on offering the operators general, network-wide
configuration synthesis systems, but they are hard to scale in cloud-
scale networks.

Propane [3] and PropaneAT [4] can synthesize BGP-specific con-
figurations from scratch; on the contrary, NetComplete [11] can
automatically complete “half-baked” BGP and OSPF configurations
by filling the configuration “holes” based on the operators’ intent.
These protocol-specific configuration synthesis techniques cannot
be straightforwardly extended to synthesize ACL-level configura-
tions, because their synthesis algorithms heavily rely on protocol-
specific features, such as BGP update propagation.

Zhang et al. [39] proposed a technique capable of detecting re-
dundancies of a single-node firewall’s policies, checking the equiv-
alence between two given firewalls’ policies, and synthesizing the
optimal policies for a given firewall (e.g., minimizing the number
of firewall policies while keeping the policy correctness). This ap-
proach targets totally different problem from Jinjing.
Network configuration verification.Agroup of works proposed
to verify the correctness of network configuration—i.e., whether
a given network configuration meets the operator’s intent. They
include: control plane verification [1, 12, 13, 15, 29, 34], dataplane
verification [3, 18, 21, 22, 24, 27, 31], complex network verifica-
tion [28, 33], and dataplane implementation [6, 37]. These systems
are designed for verification only, so that they cannot perform
fixing or synthesis. SecGuru [20] is the closet to Jinjing. While
SecGuru aims to verify the policy correctness of ACLs and firewalls,
it is only focused on single-node model rather than a distributed
setting, because its verification does not take network topology
and routing paths into account. In addition, SecGuru cannot fix or
synthesize ACL or firewall policies.

11 CONCLUSION

We have introduced Jinjing for automatically and safely updat-
ing ACL configurations in Alibaba’s global WAN. Jinjing offers
an intent language for the operators to express their ACL update
objectives, and Jinjing can generate the update plans that satisfy
their intent. The core of Jinjing is a set of novel verification and
synthesis algorithms scalable to the large network. We have pre-
sented the real-life experience that our network operators used
Jinjing to prevent mismanagement issues, and experiment results
that demonstrate Jinjing is scalable.

Ethical concerns. This work does not raise any ethical issues.

Acknowledgments

We thank our shepherd, Aurojit Panda, and the anonymous review-
ers for their insightful comments. We also thank Ang Chen and
Pengyu Zhang for their valuable feedback on earlier drafts of this
paper. Bingchuan Tian and Chen Tian are supported in part by the
National Key R&D Program of China 2018YFB1003505 and the Na-
tional Natural Science Foundation of China under Grant Numbers
61772265. Haitao Zheng and Ben Y. Zhao are supported in part by
NSF grants CNS-1527939 and CNS-1705042.

SIGCOMM ’19, August 19–23, 2019, Beijing, China

REFERENCES

[1] Beckett, R., Gupta, A., Mahajan, R., and Walker, D. A general approach to
network configuration verification. In ACM SIGCOMM (SIGCOMM) (2017).

[2] Beckett, R., Gupta, A., Mahajan, R., and Walker, D. Control plane compres-
sion. In ACM SIGCOMM (SIGCOMM) (2018).

[3] Beckett, R., Mahajan, R., Milstein, T. D., Padhye, J., and Walker, D. Don’t
mind the gap: Bridging network-wide objectives and device-level configurations.
In ACM SIGCOMM (SIGCOMM) (2016).

[4] Beckett, R., Mahajan, R., Milstein, T. D., Padhye, J., and Walker, D. Net-
work configuration synthesis with abstract topologies. In 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI) (2017).

[5] Brucker, A. D., Brügger, L., Kearney, P., and Wolff, B. Verified firewall policy
transformations for test case generation. In International Conference on Software
Testing, Verification and Validation (ICST) (2010).

[6] Cardwell, N., Cheng, Y., Brakmo, L., Mathis, M., Raghavan, B., Dukkipati,
N., Chu, H.-k. J., Terzis, A., and Herbert, T. Packetdrill: scriptable network
stack testing, from sockets to packets. In USENIX Annual Technical Conference
(ATC) (2013).

[7] Chen, F., Liu, A. X., Hwang, J., andXie, T. First step towards automatic correction
of firewall policy faults. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 7 (2012).

[8] Davis, M., Logemann, G., and Loveland, D. A machine program for theorem-
proving. Communications of the ACM 5, 7 (1962), 394–397.

[9] Davis, M., and Putnam, H. A computing procedure for quantification theory.
Journal of the ACM (JACM) 7, 3 (1960), 201–215.

[10] El-Hassany, A., Tsankov, P., Vanbever, L., and Vechev, M. T. Network-wide
configuration synthesis. In 29th International Conference on Computer Aided
Verification (CAV) (2017).

[11] El-Hassany, A., Tsankov, P., Vanbever, L., and Vechev, M. T. NetComplete:
Practical network-wide configuration synthesis with autocompletion. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI)
(2018).

[12] Fayaz, S. K., Sharma, T., Fogel, A., Mahajan, R., Millstein, T., Sekar, V., and
Varghese, G. Efficient network reachability analysis using a succinct control
plane representation. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2016).

[13] Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Maha-
jan, R., and Millstein, T. A general approach to network configuration analysis.
In 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI) (2015).

[14] Gember-Jacobson, A., Akella, A., Mahajan, R., and Liu, H. H. Automatically
repairing network control planes using an abstract representation. In 26th
Symposium on Operating Systems Principles (SOSP) (2017), pp. 359–373.

[15] Gember-Jacobson, A., Viswanathan, R., Akella, A., and Mahajan, R. Fast
control plane analysis using an abstract representation. In ACM SIGCOMM
(SIGCOMM) (2016).

[16] Hajjat, M. Y., Sun, X., Sung, Y. E., Maltz, D. A., Rao, S. G., Sripanidkulchai,
K., and Tawarmalani, M. Cloudward bound: Planning for beneficial migration
of enterprise applications to the cloud. In ACM SIGCOMM (SIGCOMM) (2010).

[17] Hallahan, W. T., Zhai, E., and Piskac, R. Automated repair by example for
firewalls. In Formal Methods in Computer Aided Design (FMCAD) (2017).

[18] Horn, A., Kheradmand, A., and Prasad, M. R. Delta-net: Real-time network
verification using atoms. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI) (Mar. 2017).

[19] Hwang, J., Xie, T., Chen, F., and Liu, A. X. Fault localization for firewall policies.
In International Symposium on Reliable Distributed Systems (SRDS) (2009).

[20] Jayaraman, K., Bjørner, N., Outhred, G., and Kaufman, C. Automated analysis
and debugging of network connectivity policies. In Technical Report MSR-TR-
2014-102 (2014).

[21] Kazemian, P., Varghese, G., and McKeown, N. Header space analysis: Static
checking for networks. In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2012).

[22] Khurshid, A., Zhou, X., Zhou, W., Caesar, M., and Godfrey, P. B. VeriFlow:
Verifying network-wide invariants in real time. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2013).

[23] Liu, A. X. Formal verification of firewall policies. In International Conference on
Communications (ICC) (2008).

[24] Lopes, N. P., Bjørner, N., Godefroid, P., Jayaraman, K., and Varghese, G.
Checking beliefs in dynamic networks. In 12th USENIX Symposium on Networked
System Design and Implementation (NSDI) (2015).

[25] Narain, S., Levin, G., Malik, S., and Kaul, V. Declarative infrastructure config-
uration synthesis and debugging. J. Network Syst. Manage. 16, 3 (2008), 235–258.

[26] Nelson, T., Ferguson, A. D., Yu, D., Fonseca, R., and Krishnamurthi, S. Exodus:
Toward automatic migration of enterprise network configurations to SDNs. In
1st ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR)
(2015).

[27] Panda, A., Argyraki, K., Sagiv, M., Schapira, M., and Shenker, S. New
directions for network verification. In LIPIcs-Leibniz International Proceedings in
Informatics (2015), vol. 32, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[28] Panda, A., Lahav, O., Argyraki, K. J., Sagiv, M., and Shenker, S. Verifying
reachability in networks with mutable datapaths. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2017).

[29] Quoitin, B., and Uhlig, S. Modeling the routing of an autonomous system with
C-BGP. IEEE Network 19, 6 (2005), 12–19.

[30] Selman, B., Mitchell, D. G., and Levesqe, H. J. Generating hard satisfiability
problems. Artificial intelligence 81, 1-2 (1996), 17–29.

[31] Stoenescu, R., Popovici, M., Negreanu, L., and Raiciu, C. Symnet: Scalable
symbolic execution for modern networks. In ACM SIGCOMM (SIGCOMM) (Aug.
2016).

[32] Sung, Y. E., Rao, S. G., Xie, G. G., and Maltz, D. A. Towards systematic design
of enterprise networks. In ACM CoNEXT (CoNEXT) (2008).

[33] Velner, Y., Alpernas, K., Panda, A., Rabinovich, A., Sagiv, M., Shenker, S.,
and Shoham, S. Some complexity results for stateful network verification. In
22nd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (2016).

[34] Wang, A., Jia, L., Zhou, W., Ren, Y., Loo, B. T., Rexford, J., Nigam, V., Scedrov,
A., and Talcott, C. L. FSR: formal analysis and implementation toolkit for
safe interdomain routing. IEEE/ACM Transactions on Network (ToN) 20, 6 (2012),
1814–1827.

[35] Yoon, M., Chen, S., and Zhang, Z. Minimizing the maximum firewall rule set
in a network with multiple firewalls. IEEE Transactions on Computers 59 (2010).

[36] Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C., and Mohapatra, P. Fireman: A
toolkit for Firewall modeling and analysis. In IEEE Symposium on Security and
Privacy (IEEE S&P) (2006).

[37] Zaostrovnykh, A., Pirelli, S., Pedrosa, L., Argyraki, K., and Candea, G. A
formally verified NAT. In ACM SIGCOMM (SIGCOMM) (2017).

[38] Zhang, S., Ivancic, F., Lumezanu, C., Yuan, Y., Gupta, A., and Malik, S. An
adaptable rule placement for software-defined networks. In 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN) (2014).

[39] Zhang, S., Mahmoud, A., Malik, S., and Narain, S. Verification and synthesis
of firewalls using SAT and QBF. In 20th IEEE International Conference on Network
Protocols (ICNP) (2012).

	Abstract
	1 Introduction
	1.1 Our Approach: Jinjing

	2 Background and Motivation
	2.1 Background: ACL
	2.2 Motivation and Our Goal

	3 Jinjing Overview
	3.1 Intent Language: LAI
	3.2 A Running Example
	3.3 System Model

	4 ACL Update Checking & Fixing
	4.1 Primitive Design: check
	4.2 Primitive Design: fix

	5 ACL Migration
	5.1 Deriving ACL Equivalence Classes
	5.2 Solving ACL Equivalence Classes
	5.3 Solving Dataplane Equivalence Class
	5.4 ACL Synthesis
	5.5 Optimization

	6 Updating Reachability
	7 Experience with Jinjing
	8 Network-Wide Experiments
	9 Discussion
	10 Related Work
	11 Conclusion
	References

